
2
4
BASIC SOUND AND SPEECH
 Demonstration Program: SoundAndSpeech

Introduction to Sound
On the Macintosh, the hardware and software aspects of producing and recording sounds are very tightly
integrated.

Audio Hardware and Sound-Related System Software
The audio hardware includes a speaker or speakers, a microphone, and one or more integrated circuits
that convert digital data to analog signals and vice versa.
The sound-related system software managers are as follows:

 The Sound Manager. The Sound Manager provides the ability to:

 Play sounds through the speaker or speakers.

 Manipulate sounds, that is, vary such characteristics as loudness, pitch, timbre, and duration.

 Compress sounds so that they occupy less disk space.

 The Sound Input Manager. The Sound Input Manager provides the ability to record
sounds using a microphone or other sound input device.

 The Speech Manager. The Speech Manager provides the ability to convert text into spoken
words.

Sound Input and Output Capabilities
The basic audio hardware, together with the sound-related system software, provides for the following
capabilities:

Basic Sound and Speech Version 1.0 24-1

 The playing back of digitally recorded sounds. (Digitally recorded sound is referred to as sampled
sound.

 The playing back of simple sequences of notes or of complex waveforms.

 The recording of sampled sounds.

 The conversion of text to spoken words.

 The mixing and synchronisation of multiple channels of sampled sounds.

 The compression and decompression of sound data.

 The integration and synchronisation of sound production with the display of video and still images.
(For example, the Sound Manager is used by QuickTime to handle all the sound data in a
QuickTime movie.)

Basic and Enhanced Sound Capabilities
Users can enhance sound playback and recording quality by substituting better speakers and microphones.
Audio capabilities may be further enhanced by adding an expansion card containing very high quality
digital signal processing (DSP) circuitry, together with sound input or output hardware. Another
enhancement option is to add a MIDI interface to one of the serial ports. Fig 1 illustrates the basic sound
capabilities of the Macintosh and how those capabilities may be further enhanced and extended.

FIG 1 - SOUND CAPABILITIES OF MACINTOSH COMPUTERS

BUILT-IN
MICROPHONE

SOUND MANAGERSOUND INPUT MANAGER

SPEECH MANAGER INTERNAL
SPEAKER

EXTERNAL SPEAKERS

DIGITAL SOUND
COMPACT DISK

digital audio
data

SCSI PORT
MIDI MANAGER

DIGITAL SOUND
CARD

audio

MIDI CONVERTER

MIDI-CONTROLLED
INSTRUMENT

EXTERNAL
MICROPHONE

ENHANCED SOUND CAPABILITY

BASIC SOUND CAPABILITY

HIGH QUALITY SOUND CAPABILITY

DEVICE DRIVER

MIDI CONVERTER

MIDI (the Musical Instrument Digital Interface) is a standard protocol for sending audio data and
commands to digital devices. A user can connect any MIDI devices (such as synthesizers,

drum machines, or lighting controllers) to a Macintosh computer through a MIDI interface.

STEREO OUTPUT JACK

Sound Data
The Sound Manager can play sounds defined using one of the following kinds of sound data:

24-2 Version 1.0 Basic Sound and Speech

 Square Wave Data. Square-wave data can be used to play a simple sequence of sounds in
which each sound is described by frequency (pitch), amplitude (volume), duration.

 Wave-Table Data. Wave table data may be used to produce more complex sounds than are
possible using square-wave data. A wave cycle is represented as an array of bytes that describe the
timbre (tone) of a sound at a point in the cycle.

 Sampled-Sound Data. Sampled sound data is a continuous list of relative voltages over
time that allow the Sound Manager to reconstruct an arbitrary analog wave form. They are typically
used to play back prerecorded sounds such as speech or special sound effects.

This chapter is oriented primarily towards the recording and playback of sampled sounds.

About Sampled Sound
Two basic characteristics affect the quality of sampled sound. Those characteristics are sample rate and
sample size.

Sample Rate
Sample rate, or the rate at which voltage samples are taken, determines the highest possible frequency that
can be recorded. Specifically, for a given sample rate, sounds can be sampled up to half that frequency.
For example, if the sample rate is 22,254 samples per second (that is, 22,254 hertz, or Hz), the highest
frequency that can be recorded is about 11,000 Hz. A commercial compact disc is sampled at 44,100 Hz,
providing a frequency response of up to about 20,000 Hz, which is the limit of human hearing.

Sample Size
Sample size, or quantisation, determines the dynamic range of the recording (the difference between the
quietest and the loudest sound). If the sample size is eight bits, 256 discrete voltage levels can be recorded.
This provides approximately 48 decibels (dB) of dynamic range. A compact disc’s sample size is 16 bits,
which provides about 96 dB of dynamic range. (Humans with good hearing are sensitive to ranges greater
than 100 dB.)

Sound Manager Capabilities
The Sound Manager supports 16-bit stereo audio samples with sample rates up to 64kHz.

Storing Sampled Sounds
Sampled-sound data comprises a series of sample frames. You can use the Sound Manager to store
sampled sounds in one of two ways, either in sound resources or in sound files.

Sound Components
The Sound Manager uses sound components to modify sound data. A sound component is a stand-alone
code resource that can perform operations on sound data such as compression, decompression, and
converting sample rates. Sound components may be hooked together in series to perform complex tasks,
as shown in the example at Fig 2.

FIG 2 - A TYPICAL SOUND COMPONENT CHAIN

APPLICATION

OUTPUT DEVICE
COMPONENT (APPLE
SOUND CHIP DRIVER)

AUDIO
HARDWARE

11kHz compressed sound
'snd ' resource

Decompressed
audio samples

22 kHz audio
samples

22 kHz decompressed
sound

APPLE MIXER
RATE

CONVERSION
COMPONENT

SOUND
MANAGER SOURCE

Expand compressed
data into audio

samples

Convert the
samples from 11

kHz to 22kHz

Mix the samples with
any other sounds that

are playing

Send the mixed samples
to the available audio

hardware

EXPANSION
COMPONENT

Basic Sound and Speech Version 1.0 24-3

The Sound Manager is aware of the sound output device selected by the user and assembles a component
chain suitable for producing the desired quality of sound on that device. Thus your application is generally
unaware of the sound component chain assembled to produce a sound on the selected output device.

Compression/Decompression
Components

Components which compress and decompress sound are called codecs (compression/decompression
components). Apple Computer supplies codecs that can handle 3:1 and 6:1 compression and expansion,
which are suitable for most audio requirements. The Sound Manager can use any available codec to handle
compression and expansion of audio data.1

Sound Resources
A sound resource is a resource of type 'snd ' that contains sound commands (see below) and possibly also
sound data. Sound resources provide a simple way for you to incorporate sounds into your application.

Sound Production

Sound Channels
A Macintosh produces sound when the Sound Manager sends data through a sound channel to the audio
hardware. A sound channel is basically a queue of sound commands (see below), which might be placed
into the sound channel by your application or by the Sound Manager itself.
The Sound Manager uses the SndChannel data type to define a sound channel:

struct SndChannel
{
 SndChannelPtr nextChan; // Pointer to next channel.
 Ptr firstMod; // (Used internally.)
 SndCallBackUPP callBack; // Pointer to callback function.
 long userInfo; // Free for application's use.
 long wait; // (Used internally.)
 SndCommand cmdInProgress; // (Used internally.)
 short flags; // (Used internally.)
 short qLength; // (Used internally.)
 short qHead; // (Used internally.)
 short qTail; // (Used internally.)
 SndCommand queue[128]; // (Used internally.)
}
typedef struct SndChannel SndChannel;
typedef SndChannel *SndChannelPtr;

Multiple Sound Channels
It is possible to have several channels of sound open at one time. The Sound Manager (using the Apple
Mixer sound component) mixes together the data coming from all open sound channels and sends a single
stream of sound data to the current sound output device. This allows a single application to play two or
more sounds at once. It also allows multiple applications to play sounds at the same time.

Sound Commands
When you call the appropriate Sound Manager function to play a sound, the Sound Manager issues one or
more sound commands to the audio hardware. A sound command is an instruction to produce or modify
sound, or otherwise contribute to the overall sound production process. The structure of a sound command
is defined by the SndCommand data type:

struct SndCommand
{
 unsigned short cmd; // Command number.
 short param1; // First parameter.

1 A term closely associated with the subject of codecs is MACE (Macintosh Audio Compression and Expansion). MACE
is a collection of Sound Manager functions which provide audio data compression and expansion capabilities in ratios of either
3:1 or 6:1. The Sound Manager uses codecs to handle the MACE capabilities.

24-4 Version 1.0 Basic Sound and Speech

 long param2; // Second parameter.
};
typedef struct SndCommand SndCommand;

The Sound Manager provides a rich set of sound commands, which are defined by constants. Some
examples are as follows:

quietCmd = 3 Stop the sound currently playing.
flushCmd = 4 Remove all commands currently queued in specified sound channel.
syncCmd = 14 Synchronise multiple channels of sound.
soundCmd = 80 Install a sampled sound as a voice in a channel.
bufferCmd = 81 Play a buffer of sampled-sound data.

Carbon Note
Several Sound Manager sound commands are not available in Carbon.

Sound Commands In 'snd ' Resources
A simple way to issue sound commands is to call the function SndPlay, specifying a sound resource of type
'snd ' that contains the sound commands you want to issue.
Often, a 'snd ' resource consists only of a single sound command (usually the bufferCmd command) together
with data that describes a sampled sound to be played. The following is an example of such a 'snd '
resource, shown in the form of the output of the MPW tool DeRez when applied to the resource:

data 'snd ' (19068,"My sound",purgeable)
{
 /* Sound resource header */
 $"0001" /* Format type. */
 $"0001" /* Number of data types. */
 $"0005" /* Sampled-sound data. */
 $"00000080" /* Initialisation option: initMono. */
 /* Sound commands */
 $"0001" /* Number of sound commands that follow (1). */
 $"8051" /* Command 1 (bufferCmd). */
 $"0000" /* param1 = 0. */
 $"00000014" /* param2 = offset to sound header (20 bytes). */
 /* Sampled sound header (Standard sound header)*/
 $"00000000" /* samplePtr Pointer to data (it follows immediately). */
 $"00000BB8" /* length Number of bytes in sample (3000 bytes). */
 $"56EE8BA3" /* sampleRate Sampling rate of this sound (22 kHz). */
 $"000007D0" /* loopStart Starting of the sample's loop point. */
 $"00000898" /* loopEnd Ending of the sample's loop point. */
 $"00" /* encode Standard sample encoding. */
 $"3C" /* baseFrequency BaseFrequency at which sample was taken. */
 /* sampleArea[] Sampled sound data */
 $"80 80 81 81 81 81 81 81 80 80 80 80 80 81 82 82"
 $"82 83 82 82 81 80 80 7F 7F 7F 7E 7D 7D 7D 7C 7C"
 (Rest of sampled sound data.)
};

Note that the sound resource header section indicates that the sound is defined using sampled-sound data.
Note also that the sound commands section contains a call to a single sound command (the bufferCmd
command (0x51)) and that the offset bit of the command number is set to indicate that the sound data is
contained within the resource itself. (Data can also be stored in a buffer separate from a sound resource.)
The second parameter to the bufferCmd command indicates the offset from the beginning of the resource to
the sampled sound header2, which immediately follows the sound commands section.
Note that the first part of the sampled sound header contains information about the sample and that the
sampled sound data is itself part of the sampled sound header.

Sending Sound Commands Directly
From the Application

You can also send sound commands into a sound channel one at a time by calling SndDoCommand or you
can bypass a sound queue altogether by calling the SndDoImmediate.
2 The sampled sound header shown is a standard sound header, which can reference only buffers of monophonic 8-bit
sound. The extended sound header is used for 8-bit or 16-bit stereo sound data as well as monophonic sound data. The
compressed sound header is used to describe compressed sound data, whether monophonic or stereo.

Basic Sound and Speech Version 1.0 24-5

Synchronous and Asynchronous Sound
You can play sounds either synchronously or asynchronously. When your application plays a sound
synchronously, it cannot continue executing until the sound has finished playing. When your application
plays a sound asynchronously, it can continue other processing while the sound is playing.
From a programming standpoint, asynchronous sound production is considerably more complex than
synchronous sound production.

Playing a Sound
Carbon Note
The Sound Manager function SndStartFilePlay (starts a file playing from disk), together with the associated
functions SndPauseFilePlay, SndStopFilePlay, SndPlayDoubleBuffer, are not available in Carbon.

Playing a Sound Resource
You can load a sound resource into memory and then play it using the SndPlay function. As previously
stated, a 'snd ' resource contains sound commands that play the desired sound and might also contain sound
data. If the sound data is compressed, SndPlay decompresses the data in order to play the sound.

Channel Allocation
If you pass NULL in the first parameter of SndPlay, a sound channel will be automatically allocated to play
the sound and then automatically disposed of when the sound has finished playing.

Playing Sounds Asynchronously
The Sound Manager allows you to play sounds asynchronously only if you allocate sound channels
yourself. If you use such a technique, your application will need to dispose of a sound channel whenever
the application finishes playing a sound. In addition, your application might need to release a sound
resource that you played on a sound channel.
The Sound Manager provides certain mechanisms that allow your application to ascertain when a sound
finishes playing, so that it can arrange to dispose of, firstly, a sound channel no longer being used and,
secondly, other data (such as a sound resource) that you no longer need after disposing of the channel.
Despite the existence of these mechanisms, the programming aspects of asynchronous sound remain rather
complex. For that reason, the demonstration program files associated with this chapter include a library,
called AsynchSoundLib, which support asynchronous sound playback and which eliminates the necessity
for your application to itself include source code relating to the more complex aspects of asynchronous
sound management.
AsynchSoundLib, which may be used by any application that requires a straightforward and uncomplicated
interface for asynchronous sound playback, is documented following the Constants, Data Types, and
Functions section of this chapter.

Sound Recording — Mac OS 8/9
On Mac OS 8/9, the Sound Input Manager provides a high-level function that allow your application to
record sounds from the user and store them in memory. When you call this functions, the Sound Input
Manager presents the sound recording dialog shown at Fig 3.

FIG 3 - SOUND RECORDING DIALOG — MAC OS 8/9

24-6 Version 1.0 Basic Sound and Speech

Carbon Note
The Sound Manager function SndRecordToFile (records sound data to a file) is not available in Carbon.

Recording a Sound Resource
You can record sounds from the current input device using the SndRecord function. When calling SndRecord,
you can pass a handle to a block of memory in the fourth parameter. The incoming data will then be stored
in that block, the size of which determines the recording time available. If you pass NULL in the fourth
parameter, the Sound Input Manager allocates the largest possible block in the application heap. Either
way, the Sound Input Manager resizes the block when the user clicks the Save button.
When you have recorded a sound, you can play it back by calling SndPlay and passing it the handle to the
block of memory in which the sound data is stored. That block has the structure of a 'snd ' resource, but its
handle is not a handle to an existing resource. To save the recorded data as a resource, you can use the
appropriate Resource Manager functions in the usual way.

Recording Quality
One of the following constants should be passed in the third parameter of the SndRecord call so as to specify
the recording quality required:

Constant Value Meaning
siCDQuality 'cd ' 44.1kHz, stereo, 16 bit.
siBestQuality 'best' 22kHz, mono, 8 bit.
siBetterQuality 'betr' 22kHz, mono, 3:1 compression.
siGoodQuality 'good' 22KHz, mono, 6:1 compression

The highest quality sound naturally requires the greatest storage space. Accordingly, be aware that, for
most voice recording, you should specify siGoodQuality.
As an example of the storage space required for sounds, one minute of monophonic sound recorded with
the same fidelity as a commercial compact disc occupies about 5.3 MB of disk space, and one minute of
telephone-quality speech takes up more than half a megabyte.

Speech
The Speech Manager converts text into sound data and passes to the Sound Manager. The Speech
Manager utilises a speech synthesiser, which can include one or more voices, each of which may have
different tonal qualities.

Generating Speech From a String
The SpeakString function is used to convert a text string into speech. SpeakString automatically allocates a
speech channel, produces the speech on that channel, and then disposes of the speech channel.

Asynchronous Speech
Speech generation is asynchronous, that is, control returns to your application before SpeakString finishes
speaking the string. However, you are free to release the memory allocated for the string as soon as
SpeakString returns, the reason being that SpeakString copies the string into an internal buffer,.

Synchronous Speech
If you wish to generate speech synchronously, you can use SpeakString in conjunction with the SpeechBusy
function, which returns the number of active speech channels, including the speech channel created by the
SpeakString function.

Basic Sound and Speech Version 1.0 24-7

Relevant Constants, Data Types, and Functions

Constants
Recording Qualities
siCDQuality = FOUR_CHAR_CODE('cd ') 44.1kHz, stereo, 16 bit.
siBestQuality = FOUR_CHAR_CODE('best') 22kHz, mono, 8 bit.
siBetterQuality = FOUR_CHAR_CODE('betr') 22kHz, mono, MACE 3:1.
siGoodQuality = FOUR_CHAR_CODE('good') 22kHz, mono, MACE 6:1.

Typical Sound Commands
quietCmd = 3 Stop the sound currently playing.
flushCmd = 4 Remove all commands currently queued in specified sound channel.
syncCmd = 14 Synchronise multiple channels of sound.
soundCmd = 80 Install a sampled sound as a voice in a channel.
bufferCmd = 81 Play a buffer of sampled-sound data.

Data Types
Sound Channel Structure
struct SndChannel
{
 SndChannelPtr nextChan; // Pointer to next channel.
 Ptr firstMod; // (Used internally.)
 SndCallBackUPP callBack; // Pointer to callback function.
 long userInfo; // Free for application's use.
 long wait; // (Used internally.)
 SndCommand cmdInProgress; // (Used internally.)
 short flags; // (Used internally.)
 short qLength; // (Used internally.)
 short qHead; // (Used internally.)
 short qTail; // (Used internally.)
 SndCommand queue[128]; // (Used internally.)
}
typedef struct SndChannel SndChannel;
typedef SndChannel *SndChannelPtr;

Sound Command Structure
struct SndCommand
{
 unsigned short cmd; // Command number.
 short param1; // First parameter.
 long param2; // Second parameter.
};
typedef struct SndCommand SndCommand;

Functions
Playing Sound Resources
void SysBeep(short duration);
OSErr SndPlay(SndChannelPtr chan,SndListHandle sndHdl,Boolean async);

Allocating and Releasing Sound Channels
OSErr SndNewChannel(SndChannelPtr *chan,short synth,long init,SndCallBackUPP userRoutine);
OSErr SndDisposeChannel(SndChannelPtr chan,Boolean quietNow);

Sending Commands to a Sound Channel
OSErr SndDoCommand(SndChannelPtr chan,const SndCommand *cmd,Boolean noWait);
OSErr SndDoImmediate(SndChannelPtr chan,const SndCommand *cmd);

Recording Sounds
OSErr SndRecord(ModalFilterUPP filterProc,Point corner,OSType quality,
 SndListHandle *sndHandle);

Generating Speech
OSErr SpeakString(ConstStr255Param textToBeSpoken);
short SpeechBusy(void);

24-8 Version 1.0 Basic Sound and Speech

The AsynchSoundLib Library
The AsynchSoundLib library is intended to provide a straightforward and uncomplicated interface for
asynchronous sound playback.
AsynchSoundLib requires that you include a global "attention" flag in your application. At startup, your
application must call AsynchSoundLib's initialisation function and provide the address of this attention
flag. Thereafter, the application must continually check the attention flag within its main event loop.
AsynchSoundLib's main function is to spawn asynchronous sound tasks, and communication between your
application and AsynchSoundLib is carried out on an as-required basis. The basic phases of
communication for a typical sound playback sequence are as follows.

 Your application tells AsynchSoundLib to play some sound.

 AsynchSoundLib uses the Sound Manager to allocate a sound channel and begins asynchronous
playback of your sound.

 The application continues executing, with the sound playing asynchronously in the background.

 The sound completes playback. AsynchSoundLib has set up a sound command that causes it
(AsynchSoundLib) to be informed immediately upon completion of playback. When playback
ceases, AsynchSoundLib sets the application’s global attention flag.

 The next time through your application’s event loop, the application notices that the attention flag is
set and calls AsynchSoundLib to free up the sound channel.

When your application terminates, it must call AsynchSoundLib to stop any asynchronous playback in
progress at the time.
AsynchSoundLib's method of communication with the application minimises processing overhead. By
using the attention flag scheme, your application calls AsynchSoundLib's cleanup function only when it is
really necessary.

AsynchSoundLib Functions
The following documents those AsynchSoundLib functions that may be called from an application.
To facilitate an understanding of the following, it is necessary to be aware that AsynchSoundLib associates
a data structure, referred to in the following as an ASStructure, with each channel. Each ASStructure
includes the following fields:

SndChannel channel; // The sound channel.
SInt32 refNum; // Reference number.
Handle sound; // The sound.
char handleState; // State to which to restore the sound handle.
Boolean inUse; // Is this ASStructure currently in use?

OSErr AS_Initialise(attnFlag,numChannels);

Boolean *attnFlag; Pointer to application's "attention" flag global variable.
SInt16 numChannels; Number of channels required to be open simultaneously. If 0 is
 specified, numChannels defaults to 4.

Returns: 0 No errors.
 Non-zero results of MemError call.

This function stores the address of the application's "attention" flag global variable and then allocates
memory for a number of ASStructures equal to the requested number of sound channels.

OSErr AS_PlayID(resID,refNum);

SInt16 resID Resource ID of the 'snd ' resource.
SInt32 *refNum A pointer to a reference number storage variable. Optional.

Basic Sound and Speech Version 1.0 24-9

Returns: 0 No errors.
 1 No channels available.
 Non-zero results of ResError call.
 Non-zero results of SndNewChannel call.
 Non-zero results of SndPlay call.

This function initiates asynchronous playback of the 'snd ' resource with ID resID.

Note
If you pass a pointer to a variable in their refNum parameters, AS_PlayID and its sister function AS_PlayHandle (see
below) return a reference number in that parameter. As will be seen, this reference number may be used to gain
more control over the playback process. However, if you simply want to trigger a sound and let it to run to
completion, with no further control over the playback process, you can pass NULL in the refNum parameter. In
this case, a reference number will not be returned.

First, AS_PlayID attempts to load the specified 'snd ' resource. If successful, the handle state is saved for later
restoration, and the handle is made unpurgeable. The function then gets a reference number and a pointer
to the next free ASStructure. A sound channel is then allocated via a call to SndNewChannel and the
associated ASStructure is initialised. HLockHi is then called to move the sound handle high in the heap and
lock it. SndPlay is then called to start the sound playing, playing, the channel.userInfo field is set to indicate
that the sound is playing, and a callback function is queued so that AsynchSoundLib will know when the
sound has stopped playing. If all this is successful, AS_PlayID returns the reference number associated with
the channel (if the caller wants it).

OSErr AS_PlayHandle(sound,refNum);

Handle sound A handle to the sound to be played.
SInt32 *refNum A pointer to a reference number storage variable. Optional.

Returns: 0 If no errors.
 1 No channels available.
 Non-zero results of SndNewChannel call.
 Non-zero results of SndPlay call.

This function initiates asynchronous playback of the sound referred to by sound.

Note
The AS_PlayHandle function is similar to AS_PlayID, except that it supports a special case: You can pass
AS_PlayHandle a NULL handle. This causes AS_PlayHandle to open a sound channel but not call SndPlay. Normally,
you do this when you want to get a sound channel and then send sound commands directly to that channel
yourself. (See AS_GetChannel, below.)

If a handle is provided, its current state is saved for later restoration before it is made unpurgeable.
AS_PlayHandle then gets a reference number and a pointer to a free ASStructure. A sound channel is then
allocated via a call to SndNewChannel and the associated ASStructure is initialised. Then, if a handle was
provided, HLockHi is called to move the sound handle high in the heap and lock it, following which SndPlay
is called to start the sound playing, the channel.userInfo field is set to indicate that the sound is playing, and a
callback function is queued so that AsynchSoundLib will know when the sound has stopped playing.
Finally, the reference number associated with the channel is returned (if the caller wants it).

OSErr AS_GetChannel(refNum,channel);

Sint32 refNum Reference number.
SndChannelPtr *channel A pointer to a SoundChannelPtr.

Returns: 0 No errors.
 1 If refNum does not refer to any current ASStructure.

24-10 Version 1.0 Basic Sound and Speech

This function searches for the ASStructure associated with refNum. If one is found, a pointer to the
associated sound channel is retuned in the channel parameter.
AS_GetChannel is provided so as to allow an application to gain access to the sound channel associated with a
specified reference number and thus gain the potential for more control over the playback process. It
allows an application to use AsynchSoundLib to handle sound channel management while at the same time
retaining the ability to send sound commands to the channel. This is most commonly done to play looped
continuous music, for which you will need to provide a sound resource with a loop and a sound command
to install the music as a voice. First, you open a channel by calling AS_PlayHandle, specifying NULL in the
first parameter. (This causes AS_PlayHandle to open a sound channel but not call SndPlay.) Armed with the
returned reference number associated with that channel, you then call AS_GetChannel to get the SndChannelPtr,
which you then pass as the first parameter in a call to SndPlay. Finally, you send a freqCmd command to the
channel to start the music playing. The playback will keep looping until you send a quietCmd command to
the channel.

void AS_CloseChannel(void);

This function is called from the application's event loop if the application's "attention" flag is set. It clears
the "attention" flag and then performs playback cleanup by iterating through the ASStructures looking for
structures which are both in use (that is, the inUse field contains true) and complete (that is, the
channel.userInfo field has been set by AsyncSoundLib's callback function to indicate that the sound has
stopped playing). It frees up such structures for later use and closes the associated sound channel.

void AS_CloseDown(void);

AS_CloseDown checks that AsynchSoundLib was previously initialised, stops all current playback, calls
AS_CloseChannel to close open sound channels, and disposes of the associated ASStructures.

Basic Sound and Speech Version 1.0 24-11

Demonstration Program SoundAndSpeech Listing
// ***
// SoundAndSpeech.c CARBON EVENT MODEL
// ***
//
// This program opens a modeless dialog containing five bevel button controls arranged in
// two groups, namely, a synchronous sound group and an asynchronous sound group. Clicking on
// the bevel buttons causes sound to be played back or recorded as follows:
//
// • Synchronous group:
//
// • Play sound resource.
//
// • Record sound resource (Mac OS 8/9 only).
//
// • Speak text string.
//
// • Asynchronous group:
//
// • Play sound resource.
//
// • Speak text string.
//
// The asynchronous sound sections of the program utilise a special library called
// AsyncSoundLibPPC, which must be included in the CodeWarrior project.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • A 'DLOG' resource and associated 'DITL', 'dlgx', and 'dftb' resources (all purgeable).
//
// • 'CNTL' resources (purgeable) for the controls within the dialog.
//
// • Two 'snd ' resources, one for synchronous playback (purgeable) and one for asynchronous
// playback (purgeable).
//
// • Four 'cicn' resources (purgeable). Two are used to provide an animated display which
// halts during synchronous playback and continues during asynchronous playback. The
// remaining two are used by the bevel button controls.
//
// • Two 'STR#' resources containing "speak text" strings and error message strings (all
// purgeable).
//
// • 'hrct' and 'hwin' resources (purgeable) for balloon help.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// Each time it is invoked, the function doRecordResource creates a new 'snd' resource with a
// unique ID in the resource fork of a file titled "SoundResources".
//
// ***

//
………
………………………………………………… includes

#include <Carbon.h>
#include <string.h>

//
………
…………………………………………………… defines

#define rDialog 128
#define iDone 1
#define iPlayResourceSync 4
#define iRecordResource 5
#define iSpeakTextSync 6
#define iPlayResourceASync 7
#define iSpeakTextAsync 8
#define rPlaySoundResourceSync 8192
#define rPlaySoundResourceASync 8193
#define rSpeechStrings 128
#define rErrorStrings 129

24-12 Version 1.0 Basic Sound and Speech

#define eOpenDialogFail 1
#define eCannotInitialise 2
#define eGetResource 3
#define eMemory 4
#define eMakeFSSpec 5
#define eWriteResource 6
#define eNoChannelsAvailable 7
#define ePlaySound 8
#define eSndPlay 9
#define eSndRecord 10
#define eSpeakString 11
#define rColourIcon1 128
#define rColourIcon2 129
#define kMaxChannels 8
#define kOutOfChannels 1

//
………
…………………………… global variables

Boolean gRunningOnX = false;
DialogRef gDialogRef;
CIconHandle gColourIconHdl1;
CIconHandle gColourIconHdl2;

// .. AsyncSoundLib attention flag

Boolean gCallAS_CloseChannel = false;

//
………
…………………… function prototypes

void main (void);
void doPreliminaries (void);
OSStatus windowEventHandler (EventHandlerCallRef,EventRef,void *);
void doIdle (void);
void doInitialiseSoundLib (void);
void doDialogHit (SInt16);
void doPlayResourceSync (void);
void doRecordResource (void);
void doSpeakStringSync (void);
void doPlayResourceASync (void);
void doSpeakStringAsync (void);
void doSetUpDialog (void);
void doErrorAlert (SInt16);
void helpTags (DialogRef);

// ………
AsyncSoundLib function prototypes

OSErr AS_Initialise (Boolean *,SInt16);
OSErr AS_GetChannel (SInt32,SndChannelPtr *);
OSErr AS_PlayID (SInt16, SInt32 *);
OSErr AS_PlayHandle (Handle,SInt32 *);
void AS_CloseChannel (void);
void AS_CloseDown (void);

// ** main

void main(void)
{
 SInt32 response;
 EventTypeSpec windowEvents[] = { { kEventClassWindow, kEventWindowClose },
 { kEventClassMouse, kEventMouseDown } };

 //
………
……………………… do preliminaries

 doPreliminaries();

 // …… disable Quit item in Mac OS X
Application menu

 DisableMenuCommand(NULL,'quit');

Basic Sound and Speech Version 1.0 24-13

 //
………
………………………… install a timer

 InstallEventLoopTimer(GetCurrentEventLoop(),0,TicksToEventTime(10),
 NewEventLoopTimerUPP((EventLoopTimerProcPtr) doIdle),NULL,
 NULL);

 //
………
……… open and set up dialog

 if(!(gDialogRef = GetNewDialog(rDialog,NULL,(WindowRef) -1)))
 {
 doErrorAlert(eOpenDialogFail);
 ExitToShell();
 }

 SetPortDialogPort(gDialogRef);
 SetDialogDefaultItem(gDialogRef,kStdOkItemIndex);

 ChangeWindowAttributes(GetDialogWindow(gDialogRef),kWindowStandardHandlerAttribute |
 kWindowCloseBoxAttribute,
 kWindowCollapseBoxAttribute);

 InstallWindowEventHandler(GetDialogWindow(gDialogRef),
 NewEventHandlerUPP((EventHandlerProcPtr) windowEventHandler),
 GetEventTypeCount(windowEvents),windowEvents,0,NULL);

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 helpTags(gDialogRef);
 gRunningOnX = true;
 }

 doSetUpDialog();

 //
………
… initialise AsyncSoundLib

 doInitialiseSoundLib();

 //
………
……………………… get colour icons

 gColourIconHdl1 = GetCIcon(rColourIcon1);
 gColourIconHdl2 = GetCIcon(rColourIcon2);

 // ……
run application event loop

 RunApplicationEventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{
 MoreMasterPointers(64);
 InitCursor();
 FlushEvents(everyEvent,0);
}

// ** windowEventHandler

OSStatus windowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void* userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 EventRecord eventRecord;
 SInt16 itemHit;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

24-14 Version 1.0 Basic Sound and Speech

 switch(eventClass)
 {
 case kEventClassWindow: // event class window
 switch(eventKind)
 {
 case kEventWindowClose:
 AS_CloseDown();
 QuitApplicationEventLoop();
 result = noErr;
 break;
 }

 case kEventClassMouse: // event class mouse
 ConvertEventRefToEventRecord(eventRef,&eventRecord);
 switch(eventKind)
 {
 case kEventMouseDown:
 if(IsDialogEvent(&eventRecord))
 {
 if(DialogSelect(&eventRecord,&gDialogRef,&itemHit))
 doDialogHit(itemHit);
 result = noErr;
 }
 break;
 }
 break;
 }

 return result;
}

// ** doIdle

void doIdle(void)
{
 Rect theRect, eraseRect;
 UInt32 finalTicks;
 SInt16 fontNum;
 static Boolean flip;

 SetRect(&theRect,262,169,294,201);
 SetRect(&eraseRect,310,170,481,200);

 if(gCallAS_CloseChannel)
 {
 AS_CloseChannel();

 GetFNum("\pGeneva",&fontNum);
 TextFont(fontNum);
 TextSize(10);
 MoveTo(341,189);
 DrawString("\pAS_CloseChannel called");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(45,&finalTicks);
 }

 if(flip)
 PlotCIcon(&theRect,gColourIconHdl1);
 else
 PlotCIcon(&theRect,gColourIconHdl2);

 flip = !flip;

 EraseRect(&eraseRect);
}

// ** doInitialiseSoundLib

void doInitialiseSoundLib(void)
{
 if(AS_Initialise(&gCallAS_CloseChannel,kMaxChannels) != noErr)
 {
 doErrorAlert(eCannotInitialise);
 ExitToShell();
 }
}

// *** doDialogHit

Basic Sound and Speech Version 1.0 24-15

void doDialogHit(SInt16 item)
{
 switch(item)
 {
 case iDone:
 AS_CloseDown();
 QuitApplicationEventLoop();
 break;

 case iPlayResourceSync:
 doPlayResourceSync();
 break;

 case iRecordResource:
 doRecordResource();
 break;

 case iSpeakTextSync:
 doSpeakStringSync();
 break;

 case iPlayResourceASync:
 doPlayResourceASync();
 break;

 case iSpeakTextAsync:
 doSpeakStringAsync();
 break;
 }
}

// ** doPlayResourceSync

void doPlayResourceSync(void)
{
 SndListHandle sndListHdl;
 SInt16 resErr;
 OSErr osErr;
 ControlRef controlRef;

 sndListHdl = (SndListHandle) GetResource('snd ',rPlaySoundResourceSync);
 resErr = ResError();
 if(resErr != noErr)
 doErrorAlert(eGetResource);

 if(sndListHdl != NULL)
 {
 HLock((Handle) sndListHdl);
 osErr = SndPlay(NULL,sndListHdl,false);
 if(osErr != noErr)
 doErrorAlert(eSndPlay);
 HUnlock((Handle) sndListHdl);
 ReleaseResource((Handle) sndListHdl);

 GetDialogItemAsControl(gDialogRef,iPlayResourceSync,&controlRef);
 SetControlValue(controlRef,0);
 }
}

// ** doRecordResource

void doRecordResource(void)
{
 SInt16 oldResFileRefNum, theResourceID, resErr, tempResFileRefNum;
 BitMap screenBits;
 Point topLeft;
 OSErr memErr, osErr;
 Handle soundHdl;
 FSSpec fileSpecTemp;
 ControlRef controlRef;

 oldResFileRefNum = CurResFile();

 GetQDGlobalsScreenBits(&screenBits);
 topLeft.h = (screenBits.bounds.right / 2) - 156;
 topLeft.v = 150;

 soundHdl = NewHandle(25000);

24-16 Version 1.0 Basic Sound and Speech

 memErr = MemError();
 if(memErr != noErr)
 {
 doErrorAlert(eMemory);
 return;
 }

 osErr = FSMakeFSSpec(0,0,"\pSoundResources",&fileSpecTemp);
 if(osErr == noErr)
 {
 tempResFileRefNum = FSpOpenResFile(&fileSpecTemp,fsWrPerm);
 UseResFile(tempResFileRefNum);
 }
 else
 doErrorAlert(eMakeFSSpec);

 if(osErr == noErr)
 {
 osErr = SndRecord(NULL,topLeft,siBetterQuality,&(SndListHandle) soundHdl);
 if(osErr != noErr && osErr != userCanceledErr)
 doErrorAlert(eSndRecord);
 else if(osErr != userCanceledErr)
 {
 do
 {
 theResourceID = UniqueID('snd ');
 } while(theResourceID <= 8191 && theResourceID >= 0);

 AddResource(soundHdl,'snd ',theResourceID,"\pTest");
 resErr = ResError();
 if(resErr == noErr)
 UpdateResFile(tempResFileRefNum);
 resErr = ResError();
 if(resErr != noErr)
 doErrorAlert(eWriteResource);
 }

 CloseResFile(tempResFileRefNum);
 }

 DisposeHandle(soundHdl);
 UseResFile(oldResFileRefNum);

 GetDialogItemAsControl(gDialogRef,iRecordResource,&controlRef);
 SetControlValue(controlRef,0);
}

// *** doSpeakStringSync

void doSpeakStringSync(void)
{
 SInt16 activeChannels;
 Str255 theString;
 OSErr resErr, osErr;
 ControlRef controlRef;

 activeChannels = SpeechBusy();

 GetIndString(theString,rSpeechStrings,1);
 resErr = ResError();
 if(resErr != noErr)
 {
 doErrorAlert(eGetResource);
 return;
 }

 osErr = SpeakString(theString);
 if(osErr != noErr)
 doErrorAlert(eSpeakString);

 while(SpeechBusy() != activeChannels)
 ;

 GetDialogItemAsControl(gDialogRef,iSpeakTextSync,&controlRef);
 SetControlValue(controlRef,0);
}

// *** doPlayResourceASync

Basic Sound and Speech Version 1.0 24-17

void doPlayResourceASync(void)
{
 SInt16 error;

 error = AS_PlayID(rPlaySoundResourceASync,NULL);
 if(error == kOutOfChannels)
 doErrorAlert(eNoChannelsAvailable);
 else
 if(error != noErr)
 doErrorAlert(ePlaySound);
}

// ** doSpeakStringAsync

void doSpeakStringAsync(void)
{
 Str255 theString;
 OSErr resErr, osErr;

 GetIndString(theString,rSpeechStrings,2);
 resErr = ResError();
 if(resErr != noErr)
 {
 doErrorAlert(eGetResource);
 return;
 }

 osErr = SpeakString(theString);
 if(osErr != noErr)
 doErrorAlert(eSpeakString);
}

// *** doSetUpDialog

void doSetUpDialog(void)
{
 SInt16 a;
 Point offset;
 ControlRef controlRef;
 ControlButtonGraphicAlignment alignConstant = kControlBevelButtonAlignLeft;
 ControlButtonTextPlacement placeConstant = kControlBevelButtonPlaceToRightOfGraphic;

 offset.v = 1;
 offset.h = 5;

 for(a=iPlayResourceSync;a<iSpeakTextAsync+1;a++)
 {
 GetDialogItemAsControl(gDialogRef,a,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlBevelButtonGraphicAlignTag,
 sizeof(alignConstant),&alignConstant);
 SetControlData(controlRef,kControlEntireControl,kControlBevelButtonGraphicOffsetTag,
 sizeof(offset),&offset);
 SetControlData(controlRef,kControlEntireControl,kControlBevelButtonTextPlaceTag,
 sizeof(placeConstant),&placeConstant);
 }

 if(gRunningOnX)
 {
 GetDialogItemAsControl(gDialogRef,iRecordResource,&controlRef);
 DeactivateControl(controlRef);
 }
}

// ** doErrorAlert

void doErrorAlert(SInt16 errorStringIndex)
{
 Str255 errorString;
 SInt16 itemHit;

 GetIndString(errorString,rErrorStrings,errorStringIndex);
 StandardAlert(kAlertCautionAlert,errorString,NULL,NULL,&itemHit);
}

// ** helpTags

void helpTags(DialogRef dialogRef)
{
 HMHelpContentRec helpContent;

24-18 Version 1.0 Basic Sound and Speech

 SInt16 a;
 ControlRef controlRef;

 memset(&helpContent,0,sizeof(helpContent));
 HMSetTagDelay(500);
 HMSetHelpTagsDisplayed(true);

 helpContent.version = kMacHelpVersion;
 helpContent.tagSide = kHMOutsideTopCenterAligned;
 helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 130;

 for(a = 1;a <= 5; a++)
 {
 if(a == 2)
 continue;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = a;
 GetDialogItemAsControl(dialogRef,a + 3,&controlRef);
 HMSetControlHelpContent(controlRef,&helpContent);
 }
}

// ***

Demonstration Program SoundAndSpeech Comments
When this program is run, the user should click on the various buttons in the dialog to play back and record (Mac OS 8/9 only)
sound resources and to play back the provided "speak text" strings. The user should observe the effects of asynchronous and
synchronous playback on the "working man" icon in the image well in the dialog. The user should also observe that the text
"AS_CloseChannel called" appears briefly in the secondary group box to the right of the "working man" icon when
AsynchSoundLib sets the application's "attention" flag to true, thus causing the application to call the AsynchSoundLib
function AS_CloseChannel.

Note that the doRecordResource function saves recorded sounds as 'snd ' resources with unique IDs in the resource fork of the
file titled "SoundResources".

On Mac OS 9, ensure that the Speech Manager extension is activated before running this program.

defines
kMaxChannels will be used to specify the maximum number of sound channels that AsynchSoundLib is to open.
kOutOfChannels will be used to determine whether the AsynchSoundLib function AS_PlayID returns a "no channels available"
error.

main
A timer is installed and set to fire repeatedly every 10 ticks. When the timer fires, the function doIdle is called.

doInitialiseSoundLib is called to initialise the AsynchSoundLib library.

doIdle
doIdle is called every time the timer fires.

The "attention" flag (gAS_CloseChannel) required by AsynchSoundLib is checked. If AsynchSoundLib has set it to true, the
AsynchSoundLib function AS_CloseChannel is called to free up the relevant ASStructure, close the relevant sound channel, and
clear the "attention" flag. In addition, some text is drawn in the group box to the right of the "working man" icon to indicate to
the user that AS_CloseChannel has just been called.

The next block draws one or other of the two "working man" icons, following which the interior of the group box is erased.

doInitialiseSoundLib
doInitialiseSoundLib initialises the AsynchSoundLib library. More specifically, it calls the AsynchSoundLib function AS_Initialise
and passes to AsynchSoundLib the address of the application's "attention" flag (gAS_CloseChannel), together with the
requested number of channels.

If AS_Initialise returns a non-zero value, an error alert is displayed and the program terminates.

doPlayResourceSync
doPlayResourceSync is the first of the synchronous playback functions. It uses SndPlay to play a specified 'snd ' resource.

GetResource attempts to load the resource. If the subsequent call to ResError indicates an error, an error alert is presented.

If the load was successful, the sound handle is locked prior to a call to SndPlay. Since NULL is passed in the first parameter of
the SndPlay call, SndPlay automatically allocates a sound channel to play the sound and deallocates the channel when the
playback is complete. false passed in the third parameter specifies that the playback is to be synchronous.

Basic Sound and Speech Version 1.0 24-19

Note: The 39940-byte 'snd ' resource being used contains one command only (bufferCmd). The compressed sound
header indicates MACE 3:1 compression. The sound length is 119568 frames. The 8-bit mono sound was sampled at
22kHz.

SndPlay causes all commands and data contained in the sound handle to be sent to the channel. Since there is a bufferCmd
command in the 'snd ' resource, the sound is played.

If SndPlay returns an error, an error alert is presented.

When SndPlay returns, HUnlock unlocks the sound handle and ReleaseResource releases the resource.

doRecordResource
On Mac OS 8/9 only, doRecordResource uses SndRecord to record a sound synchronously and then saves the sound in a 'snd '
resource. The 'snd ' resource will be saved to the resource fork of the file "SoundResources".

The first line saves the file reference number of the current resource file. The next three lines establish the location for the
top left corner of the sound recording dialog.

NewHandle creates a relocatable block. The address of the handle will be passed as the fourth parameter of the SndRecord
call. The size of this block determines the recording time available. (If NULL is passed as the fourth parameter of a
SndRecord call, the Sound Manager allocates the largest block possible in the application's heap.) If NewHandle cannot
allocate the block, an error alert is presented and the function returns.

The next block opens the resource fork of the file "SoundResources" and makes it the current resource file.

SndRecord opens the sound recording dialog and handles all user interaction until the user clicks the Cancel or Save button.
Note that the second parameter of the SndRecord call establishes the location for the top left corner of the sound recording
dialog and that the third parameter specifies 22kHz, mono, 3:1 compression.

When the user clicks the Save button, the handle is resized automatically. If the user clicks the Cancel button, SndRecord
returns userCanceledErr. If SndRecord returns an error other than userCanceledErr, an error alert is presented and the
function returns after closing the resource fork of the file, disposing of the relocatable block, and restoring the saved resource
file reference number.

The relocatable block allocated by NewHandle, and resized as appropriate by SndPlay, has the structure of a 'snd ' resource,
but its handle is not a handle to an existing resource. To save the recorded sound as a 'snd ' resource in the resource fork of
the current resource file, the do/while loop first finds an acceptable unique resource ID for the resource. (For the System file,
resource IDs for 'snd ' resources in the range 0 to 8191 are reserved for use by Apple Computer, Inc. Avoiding those IDs in
this demonstration is not strictly necessary, since there is no intention to move those resources to the System file.)

The call to AddResource causes the Resource Manager to regard the relocatable block containing the sound as a 'snd '
resource. If the call is successful, UpdateResFile writes the changed resource map and the 'snd ' resource to disk. If an error
occurs, an error alert is presented.

The relocatable block is then disposed of, the resource fork of the file "SoundResources" is closed, and the saved resource file
reference number is restored.

doSpeakStringSync
doSpeakStringSync uses SpeakString to speak a specified string resource and takes measures to cause the speech to be
generated in a psuedo-synchronous manner.

The speech that SpeakString generates is asynchronous, that is, control returns to the application before SpeakString finishes
speaking the string. In this function, SpeechBusy is used to cause the speech activity to be synchronous so far as the function
as a whole is concerned. That is, doSpeakStringSync will not return until the speech activity is complete.

As a first step, the first line saves the number of speech channels that are active immediately before the call to SpeakString.

GetIndString loads the first string from the specified 'STR#' resource. If an error occurs, an error alert is presented and the
function returns.

SpeakString, which automatically allocates a speech channel, is called to speak the string. If SpeakString returns an error, an
error alert is presented.

Although SpeakString returns control to the application immediately it starts generating the speech, the speech channel it
opens remains open until the speech concludes. While the speech continues, the number of speech channels open will be one
more that the number saved at the first line. Accordingly, the while loop continues until the number of open speech channels
is equal to the number saved at the first line. Then, and only then, does doSpeakStringSync exit.

doPlayResourceASync
doPlayResourceASync uses the AsynchSoundLib function AS_PlayID to play a 'snd ' resource asynchronously.

Note: The 24194-byte 'snd ' resource being used contains one command only (bufferCmd). The compressed sound
header indicates no compression. The sound length is 24195 frames. The 8-bit mono sound was sampled at 5kHz.

24-20 Version 1.0 Basic Sound and Speech

AS_PlayID is called to play the 'snd ' resource specified in the first parameter. Since no further control over the playback is
required, NULL is passed in the second parameter. (Recall that, if you pass a pointer to a variable in the second parameter,
AS_PlayID returns a reference number in that parameter. That reference number may be used to gain more control over the
playback process. If you simply want to trigger a sound and let it to run to completion, you pass NULL in the second
parameter, in which case a reference number is not returned by AS_PlayID.)

If AS_PlayID returns the "no channels currently available" error, an error alert is presented advising of that specific condition.
If any other error is returned, a more generalised error message is presented.

When the sound has finished playing, ASynchSoundLib advises the application by setting the application's "attention" flag to
true. Recall that this will cause the AsynchSoundLib function AS_CloseChannel to be called to free up the relevant
ASStructure, close the relevant sound channel, clear the "attention" flag, and draw some text in the group box to the right of
the image well to indicate to the user that AS_CloseChannel has just been called.

doSpeakStringAsync
doSpeakStringAsync is identical to the function doSpeakStringSync except that, in this function, SpeechBusy is not used to
delay the function returning until the speech activity spawned by SpeakString has run its course.

doSetUpDialog
Within doSetUpDialog, the Record Sound Resource bevel button is disabled if the program is running on OS X.

Basic Sound and Speech Version 1.0 24-21

	Introduction to Sound
	Audio Hardware and Sound-Related System Software
	Sound Input and Output Capabilities
	Basic and Enhanced Sound Capabilities
	Sound Data
	About Sampled Sound
	Sample Rate
	Sample Size
	Sound Manager Capabilities
	Storing Sampled Sounds

	Sound Components
	Compression/Decompression Components

	Sound Resources

	Sound Production
	Sound Channels
	Multiple Sound Channels

	Sound Commands

	Carbon Note
	Sound Commands In 'snd ' Resources
	Sending Sound Commands Directly From the Application
	Synchronous and Asynchronous Sound
	Playing a Sound

	Carbon Note
	Playing a Sound Resource
	Channel Allocation

	Playing Sounds Asynchronously

	Sound Recording — Mac OS 8/9
	Carbon Note
	Recording a Sound Resource
	Recording Quality

	Speech
	Generating Speech From a String
	Asynchronous Speech
	Synchronous Speech

	Relevant Constants, Data Types, and Functions
	Constants
	Recording Qualities
	Typical Sound Commands

	Data Types
	Sound Channel Structure
	Sound Command Structure

	Functions
	Playing Sound Resources
	Allocating and Releasing Sound Channels
	Sending Commands to a Sound Channel
	Recording Sounds
	Generating Speech

	The AsynchSoundLib Library
	AsynchSoundLib Functions

	Demonstration Program SoundAndSpeech Listing
	Demonstration Program SoundAndSpeech Comments
	defines
	main
	doIdle
	doInitialiseSoundLib
	doPlayResourceSync
	doRecordResource
	doSpeakStringSync
	doPlayResourceASync
	doSpeakStringAsync
	doSetUpDialog

